

PIV Investigations of LSB Flames

Need to Obtain More Details of the Development of LSB Flowfields

Simulation of air-jet LSB in progress

 yet to achieve stable solution due to complexities of interaction between core flow, swirling flow and freely propagating flame

Previous LDV data not sufficiently extensive for direct comparison

 needs better characterization of outer swirling flow region, selfsimilarity, downstream recirculation and swirl number effects

Rectified swirl number definition for air-jet LSB

- Previous definition derived from equation for a special case
- New definition compatible with definition for vane LSB

$$S = \frac{\pi R_e R}{A_j} \left(\frac{\dot{m}_j}{\dot{m}_{total}} \right)^2 \qquad \begin{array}{l} \textit{Re} = \textit{burner radius} \quad \textit{R} = \textit{injector radius} \\ \textit{Aj} = \textit{total area of the swirl jets} \\ \dot{m}_j = \textit{total mass flow rate of swirl} \\ \dot{m}_{total} = \textit{total mass flow rate of reactants} \end{array}$$

Downstream Flow Recirculation Weakened by Combustion Heat Release

- PIV with a large field of view shows the formation of a downstream recirculation bubble at x/D > 1
- Downstream recirculation does not affect flame brushes in the upstream region (x/D < 1)

Quantifying Recirculation Strength

Reversed mass flow rate

$$M_r = \int_{0}^{y_0} 2\pi \ y \rho U dy$$

 $y_0 = zero velocity boundary$

- Recirculation strength increases non-linearly with S
- Typical values of M_r/M_t in LSB are 10 orders of magnitude lower than in typical high swirl burners (up to M_r/M_t = 2)
- Provides another critical test for simulation

Similarity Found In LSB Flowfield

- Normalized centerline profile shows consistent linear decay of mean axial velocity at the exit
- Explains why flame brush remains stationary with increasing U
- New and important insight on the mechanism of low-swirl flame stabilization

Studies of Thermal/Diffusive Instability in Turbulent Flames

Flame Front Instabilities in Turbulent Flames

- Wrinkling introduces flame front curvatures, as well as flame front compression or stretch
- Local flame speed on the flame fronts, s, is proportional to stretch via the relationship

$$s/s_L = 1 - Ma Ka_L$$

Ma is the Markstein number Ka_L is the Karlovitz number for a local stretch rate

- Studies of flames with moderate turbulence show thermal/diffusive instabilities and hydrodynamic instabilities either dampen or promote flame wrinkle formation
- Quasi-steady DNS studies (Im and Chen) suggest impact of thermal/diffusive instabilities diminishing at frequencies > 200 1/sec

Investigate the Significance of Thermal/Diffusive Instability

- How chemistry affects the flowfield has yet to be addressed in complex flame configurations
 - Previous studies involved flame interacting with a single large vortex or at relatively low turbulence
- Exploit the unique capability of low-swirl burner to investigate systematically nine H₂, CH₄ and C₃H₈ flames

$$-S = 0.8$$
, $U_o = 5 - 15$ m/s, $\phi_{H2} = 0.3$ $\phi_{CH4} = 0.8$ & $\phi_{C3H8} = 0.75$

- Safety concerns on burning pure H₂ limited the experimental conditions to low to moderate turbulence
 - Still relevant based on statistical argument $57 < u'/l_x < 210 \text{ sec}^{-1}$ for $5 < U_o < 15 \text{ m/s}$ comparable to eddy turnover frequency $s_L/d_{L=} 300 \text{ sec}^{-1}$

Diagnostics and Analysis

- Experiments completed
 - PIV (448 image pairs)
 - Large field of view (13 by 13 cm)
 - Conditioned velocities using oil aerosol
 - Unconditioned velocities using refractory seeds OH-PLIF (200 images)
 - Smaller field of view (3 by 3 cm)
- Analysis
 - Mean and rms flowfields (complete)
 - Displacement flame speed (complete)
 - Flame front curvature distributions (in progress)

Flame Wrinkle Structures at $U_o = 5$ m/s, $u'/l_x = 57$ sec⁻¹

$$H_2$$
, $\phi = 0.3$, Le = 0.33

 C_3H_8 , $\phi = 0.75$, Le = 1.85

Difference in flame wrinkle structures readily observable

Flame Wrinkle Structures at $U_o = 15$ m/s, $u'/l_x = 210$ sec⁻¹

$$H_2$$
, $\phi = 0.3$, Le = 0.33

$$CH_{\Delta}$$
, $\phi = 0.8$, Le ≈ 1

 C_3H_8 , $\phi = 0.75$, Le = 1.85

Differences in flame wrinkle structures persist

Small Differences Found in Displacement Flame Speeds, S_D, of H₂, CH₄ and C₃H₈ Flames """

- PIV data obtained using oil aerosol determine flame brush positions, S_D, and u'
- S_D for all nine flames consistent with those obtained previously for CH₄
- **Differences in flame** zone divergence implies possible effects on S_c